科学

角平分线定理

数学术语

中文名:角平分线定理 外文名:The theorem of angle bisector 别名: 应用学科:数学 范畴:数理科学 验证方法:面积法等 学科科目:几何学
角平分线定理介绍
角平分线定理1是描述角平分线上的点到角两边距离定量关系的定理,也可看作是角平分线的性质。[1]角平分线定理2是将角平分线放到三角形中研究得出的线段等比例关系的定理,由它以及相关公式还可以推导出三角形内角平分线长与各线段间的定量关系。

定理定义

从一个角的顶点引出的把这个角分成两个相等的角的射线,叫做这个角的角平分线。

三角形的一个角(内角)的角平分线交其对边的点所连成的线段,叫做这个三角形的一条角平分线。

定理1

角平分线上的点到这个角两边的距离相等。

证明:如图1,AD平分∠BAC,DB⊥AB,DC⊥AC

∵AD是∠BAC的平分线

∴∠BAD=∠CAD

∵DB⊥AB,DC⊥AC,垂足分别为B、C

∴∠ABD=∠ACD=90°

又 AD=AD

∴△ABD≌△ACD

∴CD=BD

故原命题得证。

该命题有逆定理:

逆定理:在角的内部到一个角的两边距离相等的点在这个角的角平分线上。

证明:如图,DB⊥AB,DC⊥AC,且DB=DC

∵DB⊥AB,

∴∠DBA=90

同理∴∠DCA=90

在RT△DBA和RT△DCA中,

{DB=DC(已知)

AD=AD(公共边)

∴RT△DBA≌RT△DCA(HL)

∴∠BAD=∠CAD(全等三角形对应角相等)

定理2

三角形一个角的平分线与其对边所成的两条线段与这个角的两边对应成比例。

证明:如图2,在△ABC中,AD是∠BAC的平分线

过点D作DE⊥AB,DF⊥AC

∵AD是∠BAC的平分线,DE⊥AB,DF⊥AC

∴DE=DF(定理1)

∵2S△ABD=AB×DE,2S△ACD=AC×DF

∴S△ABD:S△ACD=AB:AC

过点A作AG⊥BC,垂足为G

∵2S△ABD=BD×AG,2S△ACD=CD×AG

∴S△ABD:S△ACD=BD:CD

∴AB:AC=BD:CD

故原命题得证。

该命题有逆定理:

如果三角形一边上的某个点与这条边所成的两条线段与这条边的对角的两边对应成比例,那么该点与对角顶点的连线是三角形的一条角平分线。

证明略。

角平分线长

由定理2和斯特瓦尔特定理可以推导出三角形内的角平分线长公式。

如右图3,在△ABC中,AD平分∠BAC

可设AB=x,AC=y,BD=u,CD=v,则BC=u+v

由定理2我们知道 AB:AC=BD:CD,所以xv=uy

由斯台沃特定理,有w²=(x²v+y²u)/(u+v)-uv

用u=xv/y,v=uy/x替换原式中的u和v

即得AD²=xy-uv=AB×AC-BD×DC 

验证推导

已知,如图4,AM为△ABC的角平分线,求证:

面积法

由三角形面积公式,得

S△ABM=(1/2)·AB·AM·sin∠BAM

S△ACM=(1/2)·AC·AM·sin∠CAM

∵AM是∠BAC的角平分线

∴∠BAM=∠CAM

∴sin∠BAM=sin∠CAM

∴S△ABM:S△ACM=AB:AC

根据:等高底共线,面积比=底长比

可得:S△ABM:S△ACM=MB:MC,则AB:AC=MB:MC

相似法

过C作CN∥AB,交AM的延长线于N

∵CN∥AB

∴∠ABC=∠BCN

又 ∠AMB=∠CMN

∴△ABM∽△NCM

∴AB:NC=BM:CM

∵AM是∠BAC的角平分线

∴∠BAN=∠CAN

又 ∠BAN=∠ANC

∴∠CAN=∠ANC

∴AC=CN

∴AB:AC=MB:MC

(过M作MN∥AB交AC于N也可证明)

正弦定理法

作△ABC的外接圆,AM交圆于D

由正弦定理,得

AB:sin∠AMB=MB:sin∠BAM,

AC:sin∠AMC=MC:sin∠CAM

∵AM是∠BAC的角平分线

∴∠BAM=∠CAM

又∠AMB+∠AMC=180°

∴sin∠BAM=sin∠CAM

sin∠AMB=sin∠AMC

∴AB:AC=MB:MC

应用例子

三角形内外角平分线性质定理:三角形的内外角平分线内、外分对边与其延长线所得的两条线段与夹这个角的两边对应成比例。

内容声明

1、本网站为开放性注册平台,以上所有展示信息均由会员自行提供,内容的真实性、准确性和合法性均由发布会员负责,本网站对此不承担任何法律责任。

2、网站信息如涉嫌违反相关法律规定或侵权,请发邮件至599385753@qq.com删除。

Copyright © 趣爱秀