科学

神经网络模型

数学模型

中文名:神经网络模型 外文名:Neural Networks,NN 适用领域: 所属学科: 反映:人脑功能的许多基本特征 性质:数学方法
神经网络模型介绍
模拟人类实际神经网络的数学方法问世以来,人们已慢慢习惯了把这种人工神经网络直接称为神经网络。神经网络在系统辨识、模式识别、智能控制等领域有着广泛而吸引人的前景,特别在智能控制中,人们对神经网络的自学习功能尤其感兴趣,并且把神经网络这一重要特点看作是解决自动控制中控制器适应能力这个难题的关键钥匙之一。神经网络和智能优化算法的组合算法是智能信息处理的主要工具,在空气质量预测、经济预测、声纳、传感器、雷达、通信等领域,很多智能优化算法和神经网络的组合模型及改进模型被提出。[1]

介绍

神经网络(Neural Networks,NN)是由大量的、简单的处理单元(称为神经元)广泛地互相连接而形成的复杂网络系统,它反映了人脑功能的许多基本特征,是一个高度复杂的非线性动力学习系统。神经网络具有大规模并行、分布式存储和处理、自组织、自适应和自学能力,特别适合处理需要同时考虑许多因素和条件的、不精确和模糊的信息处理问题。神经网络的发展与神经科学、数理科学、认知科学、计算机科学、人工智能、信息科学、控制论、机器人学、微电子学、心理学、光计算、分子生物学等有关,是一门新兴的边缘交叉学科。

神经网络的基础在于神经元。

神经元是以生物神经系统的神经细胞为基础的生物模型。在人们对生物神经系统进行研究,以探讨人工智能的机制时,把神经元数学化,从而产生了神经元数学模型。

大量的形式相同的神经元连结在—起就组成了神经网络。神经网络是一个高度非线性动力学系统。虽然,每个神经元的结构和功能都不复杂,但是神经网络的动态行为则是十分复杂的;因此,用神经网络可以表达实际物理世界的各种现象。

神经网络模型是以神经元的数学模型为基础来描述的。人工神经网络(ArtificialNuearlNewtokr)s,是对人类大脑系统的一阶特性的一种描。简单地讲,它是一个数学模型。神经网络模型由网络拓扑.节点特点和学习规则来表示。神经网络对人们的巨大吸引力主要在下列几点:

1.并行分布处理。

2.高度鲁棒性和容错能力。

3.分布存储及学习能力。

4.能充分逼近复杂的非线性关系。

在控制领域的研究课题中,不确定性系统的控制问题长期以来都是控制理论研究的中心主题之一,但是这个问题一直没有得到有效的解决。利用神经网络的学习能力,使它在对不确定性系统的控制过程中自动学习系统的特性,从而自动适应系统随时间的特性变异,以求达到对系统的最优控制;显然这是一种十分振奋人心的意向和方法。

人工神经网络的模型现在有数十种之多,应用较多的典型的神经网络模型包括BP神经网络、Hopfield网络、ART网络和Kohonen网络。

神经元的生物学解剖

在人体内,神经元的结构形式并非是完全相同的;但是,无论结构形式如何,神经元都是由一些基本的成份组成的。神经元的生物学解剖可以用图1—1所示的结构表示。从图中可以看出:神经元是由细胞体,树突和轴突三部分组成。

细胞体

细胞体是由很多分子形成的综合体,内部含有一个细胞核、核糖体、原生质网状结构等,它是神经元活动的能量供应地,在这里进行新陈代谢等各种生化过程。神经元也即是整个细胞,整个细胞的最外层称为细胞膜。

树突

细胞体的伸延部分产生的分枝称为树突,树突是接受从其它神经元传入的信息的入口。

轴突

细胞体突起的最长的外伸管状纤维称为轴突。轴突最长可达1米以上。轴突是把神经元兴奋的信息传出到其它神经元的出口。

突触是一个神经元与另一个神经元之间相联系并进行信息传送的结构。如图1—2所示。它由突触前成分,突触间隙和突触后成分组成。突触前成分是一·个神经元的轴突末梢。突触间隙是突触前成分与后成分之间的距离空间,间隙一般为200—300Å。突触后成分可以是细胞体,树突或轴突。突触的存在说明:两个神经元的细胞质并不直接连通,两者彼此联系是通过突触这种结构接口的。有时.也把突触看作是神经元之间的连接。

目前,根据神经生理学研究,已经发现神经元及其间的突触起码有4种不同行为。神经元4种生物行为有:

(1)能处于抑制或兴奋状态;

(2)能产生爆发和平台两种情况;

(3)能产生抑制后的反冲;

(4)具有适应性。

突触的4种生物行为有:

(1)能进行信息综合;

(2)能产生渐次变化的传送;

(3)有电接触和化学接触等多种连接方式;

(4)会产生延时激发。

目前,人工神经网络的研究仅仅是对神经元的第一种行为和突触的第一种行为进行模拟,其它行为尚未考虑。所以,神经网络的研究只是处于起步的初级阶段,后边还有大量的工作等人们去探讨和研究。目前,神经网络的研究已向人们展示了其美好的前景;只要按阶段不断取得进展,神经元和突触的其它行为是完全可以实现人工模拟的。

神经元的信息处理与传递

神经元的兴奋与抑制

人工神经网络对神经元的兴奋与抑制进行模拟,故而首先应了解神经元的兴奋与抑制状态。

一个神经元的兴奋和抑制两种状态是由细胞膜内外之间不同的电位差来表征的。在抑制状态,细胞膜内外之间有内负外正的电位差,这个电位差大约在-50—-100mv之间。在兴奋状态,则产生内正外负的相反电位差,这时表现为约60—100mv的电脉冲。细胞膜内外的电位差是由膜内外的离子浓度不同导致的。细胞的兴奋电脉冲宽度一般大约为1ms。神经元的兴奋过程电位变化如图1—3所示。

图1-3.神经元的兴奋过程电位变化

神经元的信息传递及阀值特性

对神经细脑的研究结果表明:神经元的电脉冲几乎可以不衰减地沿着轴突传送到其它神经元去。

由神经元传出的电脉冲信号通过轴突,首先到达轴突末梢,这时则使其中的囊泡产生变化从而释放神经递质,这种神经递质通过突触的间隙而进入到另一个神经元的树突中。树突上的受体能够接受神经递质从而去改变膜向离子的通透性.使膜外内离子浓度差产生变化;进而使电位产生变化。显然,信息就从一个神经元传送到另一个神经元中。

当神经元接受来自其它神经元的信息时,膜电位在开始时是按时间连续渐渐变化的。当膜电位变化经超出一个定值时,才产生突变上升的脉冲,这个脉冲接着沿轴突进行传递。神经元这种膜电位高达一定阀值才产生脉冲传送的特性称阀值特性。

这种阀值特性从图1—3中也可以看出。

神经元的信息传递除了有阀值特性之外,还有两个特点。一个是单向性传递,即只能从前一级神经元的轴突末梢传向后一级神经元的树突或细胞体,不能反之。另一个是延时性传递.信息通过突触传递,通常会产生0.5-1ms的延时。

神经元的信息综合特性

神经元对来自其它神经元的信息有时空综合特性。

在神经网络结构上,大量不同的神经元的轴突末梢可以到达同一个神经元的树突并形成大量突触。来源不同的突触所释放的神经递质都可以对同一个神经元的膜电位变化产生作用。因此,在树突上,神经元可以对不同来源的输入信息进行综合。这就是神经元对信息的空间综合特性。

对于来自同一个突触的信息,神经元可以对于不同时间传人的信息进行综合。故神经元对信息有时间综合特性。

基本特征

神经网络具有四个基本特征:

非线性

非线性关系是自然界的普遍特性。大脑的智慧就是一种非线性现象。人工神经元处于激活或抑制二种不同的状态,这种行为在数学上表现为一种非线性关系。具有阈值的神经元构成的网络具有更好的性能,可以提高容错性和存储容量。

非局限性

一个神经网络通常由多个神经元广泛连接而成。一个系统的整体行为不仅取决于单个神经元的特征,而且可能主要由单元之间的相互作用、相互连接所决定。通过单元之间的大量连接模拟大脑的非局限性。联想记忆是非局限性的典型例子。

非常定性

人工神经网络具有自适应、自组织、自学习能力。神经网络不但处理的信息可以有各种变化,而且在处理信息的同时,非线性动力系统本身也在不断变化。经常采用迭代过程描写动力系统的演化过程。

非凸性

一个系统的演化方向,在一定条件下将取决于某个特定的状态函数。例如能量函数,它的极值相应于系统比较稳定的状态。非凸性是指这种函数有多个极值,故系统具有多个较稳定的平衡态,这将导致系统演化的多样性。

应用

神经网络的应用已经涉及到各个领域,且取得了很大的进展。

自动控制领域

主要有系统 建模和辨识,参数整定,极点配置,内模控制,优化设计,预测控制,最优控制,滤波与预测容错控制等。

处理组合优化问题

成功解决了旅行商问题,另外还有最大匹配问题,装箱问题和作业调度问题。

模式识别

手写字符,汽车牌照,指纹和声音识别,还可用于目标的自动识别,目标跟踪,机器人传感器图像识别及地震信号的鉴别。

图像处理

对图像进行边缘监测,图像分割,图像压缩和图像恢复。

信号处理

能分别对通讯、语音、心电和脑电信号进行处理分类;可用于海底声纳信号的检测与分类,在反潜、扫雷等方面得到应用。

机器人控制

对机器人轨道控制,操作机器人眼手系统,用于机械手的故障诊断及排除,智能自适应移动机器人的导航,视觉系统。

卫生保健医疗

在乳房癌细胞分析,移植次数优化,医院费用节流,医院质量改进,疾病诊断模型等方面均有应用。比如通过训练自主组合的多层感知器可以区分正常心跳和非正常心跳、基于BP网络的波形分类和特征提取在计算机临床诊断中的应用。

焊接领域

国内外在参数选择、质量检验、质量预测和实时控制方面都有研究,部分成果已得到应用。

经济

能对商品价格、股票价格和企业的可信度等进行短期预测

另外,在数据挖掘、电力系统、交通、军事、矿业、农业和气象等方面亦有应用。

相关资讯
内容声明

1、本网站为开放性注册平台,以上所有展示信息均由会员自行提供,内容的真实性、准确性和合法性均由发布会员负责,本网站对此不承担任何法律责任。

2、网站信息如涉嫌违反相关法律规定或侵权,请发邮件至599385753@qq.com删除。

Copyright © 趣爱秀