设有二元线性方程组
(1)a11·X1+a12·X2=b1
a21·X1+a22·X2=b2
用加减消元法容易求出未知量x1,x2的值,当a11a22–a12a21≠0时,有(2)X1=(b1·a22-a12·b2)/(a11·a22-a12·a21)
X2=(a11·b2-b1·a21)/(a11·a22-a12·a21)
这就是一般二元线性方程组的公式解。但这个公式很不好记忆,应用时不方便,因此,我们引进新的符号来表示(2)这个结果,这就是行列式的起源。
定义1我们称4个数组成的符号为二阶行列式。
行列式是一个重要的数学工具,不仅在数学中有广泛的应用,在其他学科中也经常遇到。
历史上,最早使用行列式概念的是17世纪德国数学家莱布尼兹,后来瑞士数学家克莱姆於1750年发表了著名的用行列式解线性方程组的克莱姆法则,首先将行列式的理论脱离开线性方程组的是数学家范德蒙,1772年他对行列式作出连贯的逻辑阐述。
法国数学家柯西于1841年首先创立了现代的行列式概念和符号,包括行列式一词的使用,但他的某些思想和方法是来自高斯的。在行列式理论的形成与发展的过程中做出过重大贡献的还有拉格朗日、维尔斯特拉斯、西勒维斯特和凯莱等数学家。
主对角线:左上方与右下方组成的对角线。
次对角线:另一条对角线。
二阶行列式的值就是主对角线相乘减去次对角线相乘得到的数值。
二阶行列式满足行列式的运算法则,详见行列式
本文讨论线性代数中的几个量:二阶行列式、二阶矩阵、二维向量、二元一次方程组与线性变换。给出二阶行列式的几何意义以及这几个量之间的关系,帮助学生对这些量有进一步的理解。
1、本网站为开放性注册平台,以上所有展示信息均由会员自行提供,内容的真实性、准确性和合法性均由发布会员负责,本网站对此不承担任何法律责任。
2、网站信息如涉嫌违反相关法律规定或侵权,请发邮件至599385753@qq.com删除。