生活

指数运算法则

数学术语

中文名:指数运算法则 外文名: 别名: 类型:数学运算 函数特点:一个方向无限趋向于X轴永不相交 界限:显然指数函数无界 奇偶性:既不是奇函数也不是偶函数
指数运算法则介绍
指数函数的一般形式为y=a^x(a>0且不=1),函数图形上凹,a大于1,则指数函数单调递增;a小于1大于0,则为单调递减的函数。指数函数既不是奇函数也不是偶函数。要想使得x能够取整个实数集合为定义域,则只有使得a的不同大小影响函数图形的情况。[1]

法则

在函数y=a^x中可以看到:

(1)指数函数的定义域为所有实数的集合,这里的前提是a大于0且不等于1,对于a不大于0的情况,则必然使得函数的定义域不存在连续的区间,因此我们不予考虑,同时a等于0一般也不考虑。

(2)指数函数的值域为大于0的实数集合。

(3)函数图形都是下凹的。

(4)a大于1,则指数函数单调递增;a小于1大于0,则单调递减。

(5)可以看到一个显然的规律,就是当a从0趋向于无穷大的过程中(当然不能等于0),函数的曲线从分别接近于Y轴与X轴的正半轴的单调递减函数的位置,趋向分别接近于Y轴的正半轴与X轴的负半轴的单调递增函数的位置。其中水平直线y=1是从递减到递增的一个过渡位置。

(6)函数总是在某一个方向上无限趋向于X轴,永不相交。

(7)函数总是通过定点(0,1)

(8)指数函数无界。

(9)指数函数既不是奇函数也不是偶函数。

(10)当两个指数函数中的a互为倒数时,此函数图像是偶函数。

记忆口决

有理数的指数幂,运算法则要记住。

指数加减底不变,同底数幂相乘除。

指数相乘底不变,幂的乘方要清楚。

积商乘方原指数,换底乘方再乘除。

非零数的零次幂,常值为1不糊涂。

负整数的指数幂,指数转正求倒数。

看到分数指数幂,想到底数必非负。

乘方指数是分子,根指数要当分母。

看到分数指数幂,想到底数必非负。

乘方指数是分子,根指数要当分母。

相关资讯
内容声明

1、本网站为开放性注册平台,以上所有展示信息均由会员自行提供,内容的真实性、准确性和合法性均由发布会员负责,本网站对此不承担任何法律责任。

2、网站信息如涉嫌违反相关法律规定或侵权,请发邮件至599385753@qq.com删除。

Copyright © 趣爱秀