真空中的光速等于299,792,458米/秒(1,079,252,848.8千米/小时)。这个速度并不是一个测量值,而是一个定义。它的计算值为(299792500±100)米/秒。国际单位制的基本单位米于1983年10月21日起被定义为光在1/299,792,458秒内传播的距离。使用英制单位,光速约为186,282.397英里/秒,或者670,616,629.384英里/小时,约为1英尺/纳秒。
在任何透明或者半透明的介质(比如玻璃和水)中,光速会降低;c比光在某种介质中的速度就是这种介质的折射率。重力的改变能够弯曲光所传播的空间,使光像通过凸透镜一样发生弯曲,看上去绕过了质量较大的天体。光弯曲的现象叫做引力透镜效应,根据变化了的光线在光谱外波段呈现的不规则程度,可以推算发光星系的年龄和距离。
根据爱因斯坦的相对论,没有任何物体或信息运动的速度可以超过光速。
光速的测量方法:最早光速的准确数值是通过观测木星对其卫星的掩食测量的。还有转动齿轮法、转镜法、克尔盒法、变频闪光法等光速测量方法。
接近光速情况下,笛卡尔座标系不再适用。同样测量光线离开自己的速度,一个快速追光的人与一个静止的人会测得相同的速度(光速)。这与日常生活中对速度的概念有异。两车以50km/h的速度迎面飞驰,司机会感觉对方的车以50+50=100km/h行驶,即与自己静止而对方以100km/h迎面驶来的情况无异。但当速度接近光速时,实验证明简单加法计算速度不再奏效。当两飞船以90%光速的速度(对第三者来说)迎面飞行时,船上的人不会感觉对方的飞船以90%+90%=180%光速速度迎面飞来,而只是以稍低于99.5%的光速速度行驶。结果可从爱因斯坦计算速度的算式得出:
其中v和w是对第三者来说飞船的速度,u是感受的速度,c是光速。
根据现代物理学,所有电磁波,包括可见光,在真空中的速度是常数,即是光速。强相互作用、电磁作用、弱相互作用传播的速度都是光速,根据广义相对论,万有引力传播的速度也是光速,且已于2003年得以证实。根据电磁学的定律,发放电磁波的对象的速度不会影响电磁波的速度。结合相对性原则,观察者的参考坐标和发放光波的对象的速度不会影响被测量的光速,但会影响波长而产生红移、蓝移。这是狭义相对论的基础。相对论探讨的是光速而不是光,就算光被稍微减慢,也不会影响狭义相对论。
真空中的光速,这是最古老的物理常数之一。最早于1629年艾萨克•毕克曼(beeckman)提出一项试验,一人将遵守闪光灯一炮反映过一面镜子,约一英里。伽利略认为光速是有限的,1638年他请二个人提灯笼各爬上相距仅约一公里的山上,第一组人掀开灯笼,并开始计时,对面山上的人看见亮光后掀开灯笼,第一组看见亮光后,停止计时,这是史上著名的测量光速的掩灯方案,这种测量方法实际测到的主要只是实验者的反应和人手的动作时间。
奥拉夫·雷默(Olaf Roemer)是丹麦的天文学家。他对木星的一个卫星I做了许多系统的研究;I绕木星运转一周需1.76地球日;每周的时间相同;出现受木星遮挡I的月蚀,其周期也是相同的。因此雷默希望能准确地预言I出现月食的时间。但是他注意到一年内,I出现月食的时间不像他所预言的哪样;有时比预言的时间早;有时则较晚。而且愈来愈晚。然后,又比预言的时间早。后来,他明白了;当地球沿太阳运转,并接近木星时(见右图),I出现月食的时间比预言的早。当地球离木星远时,I月蚀的时间比预言的晚。1676年9月,他准确地预言,11月9日的I月蚀时间比预期的晚10分钟。后来,果真是这样。使当时他的同事大为吃驚。二星期后雷默告述诉他们,这是由于地球和木星在各自轨道上运动,它们之间的距离是改变的。从I反射太阳的光到达地球所需的时间因之也改变。地球与木星的距离最远时,所需的时间最长。反之,最短。因此,最长时间和最短时间的差就是光从地球绕太阳运行轨道一点到另一对方点所需的时间。从雷默观察,光要22分钟走过地球绕太阳运行的轨道。由此算出光速为214000km/s.由于当时不能准确知道行星的距离。雷默此时求得的光速与现今准确测出的光速。可说是很接近了。因此,1676年是雷默第一次测出光速的人和时间。
1728年,布拉德雷根据恒星光行差求得c=3.1×108m/s。
1849年,斐索用旋转齿轮法求得c=3.153×108m/s。他是第一位用实验方法,测定地面光速的实验者。实验方法大致如下:光从半镀银面反射后,经高速旋转的齿轮投向反射镜,再沿原路返回。如果齿轮转过一齿所需的时间,正好与光往返的时间相等,就可透过半镀银面观测到光,从而根据齿轮的转速计算出光速。
1862年,傅科用旋转镜法测空气中的光速,原理和斐索的旋转齿轮法大同小异,他的结果是c=2.98×108m/s。第三位在地面上测到光速的是考尔纽(M.A.Cornu)。
1874年他改进了斐索的旋转齿轮法,得c=2.9999×108m/s。迈克耳逊改进了傅科的旋转镜法,多次测量光速。
1879年,得c=(2.99910±0.00050)×108m/s.1882年得c=(2.99853±0.00060)×108m/s。后来,他综合旋转镜法和旋转齿轮法的特点,发展了旋转棱镜法。
1924~1927年间,得c=(2.99796±0.00004)×108m/s。迈克耳逊在推算真空中的光速时,应该用空气的群速折射率,可是他用的却是空气的相速折射率。这一错误在1929年被伯奇发觉,经改正后,1926年的结果应为c=(2.99798±0.00004)×108m/s=2997984±4km/s。
后来,由于电子学的发展,用克尔盒、谐振腔、光电测距仪等方法,光速的测定,比直接用光学方法又提高了一个数量级。
60年代激光器发明,运用稳频激光器,可以大大降低光速测量的不确定度。
1973年达0.004ppm,终于在1983年第十七届国际计量大会上作出决定,将真空中的光速定为精确值。
1676年,丹麦天文学家O.C.罗默利用木星卫星的星蚀时间变化证实光是以有限速度传播的。1727年,英国天文学家J.布拉得雷利用恒星光行差现象估算出光速值为c=303000千米/秒。
罗默的卫星蚀法
光速的测量,首先在天文学上获得成功,这是因为宇宙广阔的空间提供了测量光速所需要的足够大的距离.早在1676年丹麦天文学家罗默(1644—1710)首先测量了光速.由于任何周期性的变化过程都可当作时钟,他成功地找到了离观察者非常遥远而相当准确的“时钟”,罗默在观察时所用的是木星每隔一定周期所出现的一次卫星蚀.他在观察时注意到:连续两次卫星蚀相隔的时间,当地球背离木星运动时,要比地球迎向木星运动时要长一些,他用光的传播速度是有限的来解释这个现象.光从木星发出(实际上是木星的卫星发出),当地球离开木星运动时,光必须追上地球,因而从地面上观察木星的两次卫星蚀相隔的时间,要比实际相隔的时间长一些;当地球迎向木星运动时,这个时间就短一些.因为卫星绕木星的周期不大(约为1.75天),所以上述时间差数,在最合适的时间不致超过15秒(地球的公转轨道速度约为30千米/秒).因此,为了取得可靠的结果,当时的观察曾在整年中连续地进行.罗默通过观察从卫星蚀的时间变化和地球轨道直径求出了光速.由于当时只知道地球轨道半径的近似值,故求出的光速只有214300km/s.这个光速值尽管离光速的准确值相差甚远,但它却是测定光速历史上的第一个记录.后来人们用照相方法测量木星卫星蚀的时间,并在地球轨道半径测量准确度提高后,用罗默法求得的光速为299840±60km/s.
布莱德雷的光行差法
1728年,英国天文学家布莱德雷(1693—1762)采用恒星的光行差法,再一次得出光速是一有限的物理量.布莱德雷在地球上观察恒星时,发现恒星的视位置在不断地变化,在一年之内,所有恒星似乎都在天顶上绕着半长轴相等的椭圆运行了一周.他认为这种现象的产生是由于恒星发出的光传到地面时需要一定的时间,而在此时间内,地球已因公转而发生了位置的变化.他由此测得光速为:C=299930千米/秒
这一数值与实际值比较接近.
以上仅是利用天文学的现象和观察数值对光速的测定,而在实验室内限于当时的条件,测定光速尚不能实现.
光速的测定包含着对光所通过的距离和所需时间的量度,由于光速很大,所以必须测量一个很长的距离和一个很短的时间,大地测量法就是围绕着如何准确测定距离和时间而设计的各种方法.
最早于1629年艾萨克·毕克曼(Beeckman)提出一项试验,一人将遵守闪光灯一炮反映过一面镜子,约一英里。伽利略认为光速是有限的,1638年他请二个人提灯笼各爬上相距仅约一公里的山上,第一组人掀开灯笼,并开始计时,对面山上的人看见亮光后掀开灯笼,第一组看见亮光后,停止计时,这是史上著名的测量光速的掩灯方案,这种测量方法实际测到的主要只是实验者的反应和人手的动作时间。
伽利略测定光速的方法
物理学发展史上,最早提出测量光速的是意大利物理学家伽利略.1607年在他的实验中,让相距甚远的两个观察者,各执一盏能遮闭的灯,如图所示:观察者A打开灯光,经过一定时间后,光到达观察者B,B立即打开自己的灯光,过了某一时间后,此信号回到A,于是A可以记下从他自己开灯的一瞬间,到信号从B返回到A的一瞬间所经过的时间间隔t.若两观察者的距离为S,则光的速度为
因为光速很大,加之观察者还要有一定的反应时间,所以伽利略的尝试没有成功.如果用反射镜来代替B,那么情况有所改善,这样就可以避免观察者所引入的误差.这种测量原理长远地保留在后来的一切测定光速的实验方法之中.甚至在现代测定光速的实验中仍然采用.但在信号接收上和时间测量上,要采用可靠的方法.使用这些方法甚至能在不太长的距离上测定光速,并达到足够高的精确度.
旋转齿轮法
用实验方法测定光速首先是在1849年由斐索实验.他用定期遮断光线的方法(旋转齿轮法)进行自动记录.实验示意图如下.从光源s发出的光经会聚透镜L1射到半镀银的镜面A,由此反射后在齿轮W的齿a和a’之间的空隙内会聚,再经透镜L2和L3而达到反射镜M,然后再反射回来.又通过半镀镜A由L4集聚后射入观察者的眼睛E.如使齿轮转动,那么在光达到M镜后再反射回来时所经过的时间△t内,齿轮将转过一个角度.如果这时a与a’之间的空隙为齿a(或a’)所占据,则反射回来的光将被遮断,因而观察者将看不到光.但如齿轮转到这样一个角度,使由M镜反射回来的光从另一齿间空隙通过,那么观察者会重新看到光,当齿轮转动得更快,反射光又被另一个齿遮断时,光又消失.这样,当齿轮转速由零而逐渐加快时,在E处将看到闪光.由齿轮转速v、齿数n与齿轮和M的间距L可推得光速c=4nvL.
在斐索所做的实验中,当具有720齿的齿轮,一秒钟内转动12.67次时,光将首次被挡住而消失,空隙与轮齿交替所需时间为在这一时间内,光所经过的光程为2×8633米,所以光速在对信号的发出和返回接收时刻能作自动记录的遮断法除旋转齿轮法外,在现代还采用克尔盒法.1941年安德孙用克尔盒法测得:c=299776±6km/s,1951年贝格斯格兰又用克尔盒法测得c=299793.1±0.3km/s.
旋转镜法
旋转镜法的主要特点是能对信号的传播时间作精确测量.1851年傅科成功地运用此法测定了光速.旋转镜法的原理早在1834年1838年就已为惠更斯和阿拉果提出过,它主要用一个高速均匀转动的镜面来代替齿轮装置.由于光源较强,而且聚焦得较好.因此能极其精密地测量很短的时间间隔.实验装置如图所示.从光源s所发出的光通过半镀银的镜面M1后,经过透镜L射在绕O轴旋转的平面反射镜M2上O轴与图面垂直.光从M2反射而会聚到凹面反射镜M3上,M3的曲率中心恰在O轴上,所以光线由M3对称地反射,并在s′点产生光源的像.当M2的转速足够快时,像S′的位置将改变到s〃,相对于可视M2为不转时的位置移动了△s的距离可以推导出光速值。式中w为M2转动的角速度.l0为M2到M3的间距,l为透镜L到光源S的间距,△s为s的像移动的距离.因此直接测量w、l、l0、△s,便可求得光速。
在傅科的实验中:L=4米,L0=20米,△s=0.0007米,W=800×2π弧度/秒,他求得光速值c=298000±500km/s.
另外,傅科还利用这个实验的基本原理,首次测出了光在介质(水)中的速度v
旋转棱镜法
美国的迈克尔逊把齿轮法和旋转镜法结合起来,创造了旋转棱镜法装置.因为齿轮法之所以不够准确,是由于不仅当齿的中央将光遮断时变暗,而且当齿的边缘遮断光时也是如此.因此不能精确地测定象消失的瞬时.旋转镜法也不够精确,因为在该法中象的位移△s太小,只有0.7毫米,不易测准.迈克耳逊的旋转镜法克服了这些缺点.他用一个正八面钢质棱镜代替了旋转镜法中的旋转平面镜,从而光路大大的增长,并利用精确地测定棱镜的转动速度代替测齿轮法中的齿轮转速测出光走完整个路程所需的时间,从而减少了测量误差.从1879年至1926年,迈克耳逊曾前后从事光速的测量工作近五十年,在这方面付出了极大的劳动.1926年他的最后一个光速测定值为c=299796km/s。这是当时最精确的测定值,很快成为当时光速的公认值。
光速测定的天文学方法和大地测量方法,都是采用测定光信号的传播距离和传播时间来确定光速的.这就要求要尽可能地增加光程,改进时间测量的准确性.这在实验室里一般是受时空限制的,而只能在大地野外进行,如斐索的旋轮齿轮法当时是在巴黎的苏冷与达蒙玛特勒相距8633米的两地进行的.傅科的旋转镜法当时也是在野外,迈克耳逊当时是在相距35373.21米的两个山峰上完成的.现代科学技术的发展,使人们可以使用更小更精确地实验仪器在实验室中进行光速的测量.
微波谐振腔法
1950年埃森最先采用测定微波波长和频率的方法来确定光速.在他的实验中,将微波输入到圆柱形的谐振腔中,当微波波长和谐振腔的几何尺寸匹配时,谐振腔的圆周长πD和波长之比有如下的关系:πD=2404825λ,因此可以通过谐振腔直径的测定来确定波长,而直径则用干涉法测量;频率用逐级差频法测定.测量精度达.在埃森的实验中,所用微波的波长为10厘米,所得光速的结果为299792.5±1km/s.
激光测速法
1970年美国国家标准局和美国国立物理实验室最先运用激光测定光速.这个方法的原理是同时测定激光的波长和频率来确定光速(c=vλ).由于激光的频率和波长的测量精确度已大大提高,所以用激光测速法的测量精度可达,比以前已有最精密的实验方法提高精度约100倍.
除了以上介绍的几种测量光速的方法外,还有许多十分精确的测定光速的方法.
根据1975年第十五届国际计量大会的决议,现代真空中光速的准确值是:
c=299792.458±0.001km
丹麦天文学家罗默(OleRomer)在17世纪首次成功地计算出光速。他使用木星的一颗卫星有规律的轨道运动作为计时器,每次这颗卫星被巨大的行星(木星)所掩食,他便记录下一个“滴答”。但他发现,从地球上观察,这些滴答的出现并不像预想的那么规律,在一年之中会时而快几分钟,时而慢几分钟。
罗默计算出,这些时延是木星和地球在绕太阳运动时它们之间的距离变化所引起的。通过计算一年里地球、木星及其卫星在轨道上的相对位置,他算出了光穿过宇宙空间的速度。罗默于1676年向法国科学院提交了他的结果,数值与目前被接受的值之差不超过30%。
对光之本性的理论探讨也使人们对光速有所了解。19世纪60年代中期,苏格兰科学家詹姆斯•克拉克•麦克斯韦创建了一组方程,描述电磁场在空间中的行为。这个方程的一个解表明,电磁波在真空中必须以约为每秒30万公里的速度传播,与罗默及其后人的测量结果相当接近。
伦敦皇家研究院的迈克尔•法拉第用电场和磁场的概念解释静电力和磁场力,并表明光会受到磁场影响。这证实了可见光事实上是电磁波谱中的一部分。对电磁波谱其它部分——微波,红外线,紫外线,X射线和γ射线——传播速度的直接测量表明,它们在真空中都有相同的速度。
用于测量光速的实验不断地变得更精确。到20世纪50年代,电子计时装置已经取代了古老的机械设备。20世纪80年代,通过测量激光和频率(f)和波长(λ),运用c=fλ公式计算出了光速(c)。这些计算以米和秒的标准定义为基础,就像现在一样,1米定义为氪-86源产生的光的波长的1,650,763.73倍,1秒则定义为铯-133原子超精细跃迁放出的辐射频率的9,192,631,770倍。这使得c达到非常高的精度,误差只有十亿分之几。
1983年,光速取代了米被选作定义标准,约定为299,792,458米/秒,数值与当时的米定义一致。秒和光速的定义值,表示1米从此定义为光在真空中1/299,792,458秒内走过的距离。因此自1983年以来,不管我们对光速的测量作了多少精确的修正,都不会影响到光速值,却会影响到米的长度。你有多高事实上是由光速定义的。
但光速还定义着比长度更加基本的东西。阿尔伯特•爱因斯坦的工作表明了光速的真正重要性。由于他的功劳,我们知道,光速不仅仅是光子在真空中运动的速度,还是连接时间与空间的基本常数。
爱因斯坦年轻的时候曾经问自己,如果人运动的速度快到足以跟上光的脚步,光看起来是什么样子的。理论上它看上去像是你身边一个静止的峰,但爱因斯坦知道,麦克斯韦方程组不允许这种结果出现。他得出结论认为,要么是麦克斯韦的理论不适用于运动中的观察者,要么是相对运动力学需要更改。
爱因斯坦在他1905年发表的狭义相对论里解决了这个问题。这一理论基于一个通用原则:相对任何以恒定速度运动的观察者来说,不管这个速度是多少,物理原理及光速都是一样的。爱因斯坦的狭义相对论使我们对时间和空间的观念发生了革命性的变化,强调了光速在物理学中的根本地位。
想象你在一枚火箭里,与一道激光脉冲一同冲入宇宙空间。地球上的观察者会看到这一脉冲以光速远去。无论你相对于地球运动的速度为多少,譬如光速的99%罢,光线仍以光速超越你。看起来似乎很荒谬,但这是真的。使这为真的唯一途径,就是你火箭中的居住者和地球表面的观察者以不同方式衡量时间和空间。
时间与空间看上去当然是不同的,这依赖于你是在地球上还是在宇宙空间里。爱因斯坦的广义相对论将引力描述为时空几何结构的扭曲。这种说法的一个推论,就是始终沿可能的最短路径穿越时空的光线,在大质量物体附近会弯曲。这在1919年日食期间观测掠过太阳附近的星光被太阳的质量所弯曲而得到证明。这一观测使爱因斯坦的理论最终得到接受,并为他赢得了世界性的声誉。
但按照基本力学原理,如果光线偏转,它会被加速。这是否将使光速发生变化,动摇相对论的根本原则?在某种意义上是对的:我们从地球上观察到的光速,在它从太阳附近经过时确实会变化。然而相对论和光速不变原理不能被抛弃。
爱因斯坦认识到,引力是无法自由运动的观察者们经历的某种幻象。想象从一堵墙上跳下。在自由落体的过程中,你不会感动周围的引力作用,但任何在地面上瞧着你落下来的人,都会解释说你的运动是引力的作用所致。同样的说法对空间站中的宇航员也适用:他们被提及时总是说成时处在“零重力”环境里,但从地球的表面往上看,我们会用引力吸引来解释他们绕地球的轨道运动。所以当我们从地球上观察时,经过太阳附近的光线看上去弯曲、加速了,但如果我们自由落体地落向太阳,光线看上去会以恒速沿直线经过我们身边。对任何自由落体的观察者来说,经过他的光线都以恒定速度运动。不过,它在掠过扭曲其附近时空的大质量物体时,看上去会弯曲和加速。
相对论另一个奇怪的推论是,没有任何物体能加速到光速。不和我们建造动力多么强劲的火箭飞船,它们也永远不能到达光速。这是因为物体运动得越快,其动能越大,惯性也越大。爱因斯坦在他的E=mc2公式中指出,能量和质量或者说惯性相关联。因此一个物体的动能增加,它的惯性也增加,从而越来越难继续加速。这是一个收益递减原理:你对一个物体做的功越多,它就变得越重,加速的效果也越微弱。
把单一电子加速到光速,就需要无限的能量,粒子物理学家们对这一限制深有感触。质子进入美国伊利诺伊州Batawia费米实验室的Tevatron加速器时,它们的速度已经达到光速的99%。加速器的最后阶段使质子的能量提高了100倍,但速度仅增加到光速的99.99995%,与它们进入加速器的速度相比,提高不足1%。
不过,一直与相对论有冲突的量子理论看上去是允许物质以大于光速的速度运动的。在20世纪20年代,量子论显示一个系统相隔遥远的不同组成部分能够瞬时联系。例如,当一个高能光子衰变成两个低能光子时,它们的状态(例如,是顺时针或逆时针自旋)是不定的,直到对它们中间的某一个作出观察才确定下来。另一个粒子看上去感知到它的同伴被进行了一次观测,结果是任何对第二个粒子的测量总会得到与对第一个粒子的测量相一致的结果。这样远距离的瞬时联系,看起来像是一个讯息以无限大的速度在粒子之间传递了。它被爱因斯坦称为“幽灵式的超距作用”,听起来难以置信,但却是真实的现象。
1993年,加利福尼亚大学伯克利分校的RaymondChiao表明,量子理论还允许另一种超光速旅行存在:量子隧穿。想象朝一堵坚实的墙上踢一个足球,牛顿力学预言它会被弹会,但量子力学预言它还有极小的可能出现在墙的另一面。考虑这种情况的一种途径,是想象它能“借”到足够的能量穿越墙壁,并在到达另一面之后立即将能量归还。这并不违反物理定律,因为最终能量、动量和其它属性都得到了保存。德国物理学家维纳•海森堡的测不准原理表明,在一个系统中,总有某些属性——在这一情况中是能量——的值是不能确定的,因此量子物理学原理允许系统利用这种不确定性,短时间借到一些额外的能量。在隧穿的情况中,粒子从障碍物的一面消失又从另一面重现的需要几乎可以忽略不计,障碍物可以任意的厚——不过随着厚度增加,粒子隧穿的几率也就迅速地朝零的方向递减。
Chiao通过测量可见光光子通过特定过滤器的隧穿时间,证明了隧穿“超光速”隧穿效应的存在。为此,他让这些光子与在相似时间内穿过真空的光子进行比较。结果隧穿光子先到达探测器,Chiao证明它们穿越过滤器的速度可能为光速的1.7倍。
1994年,维也纳技术大学的FerencKraus表明,隧穿时间有一个不依赖于障碍物厚度的上限,这表示光子隧穿障碍物的时间没有上限。德国科隆大学的GunterNimtz也用微波实现了这种“超光速”。他甚至把莫扎特第40号交响曲调制在信号上,以4.7倍光速的速度将它传输通过12厘米厚的障碍物。
目前公认光速与介质相关:光在水中的速度:2.25×10^8m/s ,光在玻璃中的速度:2.0×10^8m/s ,光在冰中的速度:2.30×10^8m/s 光,在空气中的速度:3.0×10^8m/s ,光在酒精中的速度:2.2×10^8m/s 。
承认光是波,就应该用波学原理来分析光,而不是用粒子规律。任何波在均匀稳定的介质中,波速都不变,与波源无关。例如:无论在空气静止的地面,还是超音速飞机的内部,只要空气性质相同,声速都不变,这没什么奇怪的。在一辆运动的车上发射粒子与发射波也不同,粒子速度是速度叠加,而波的规律是波速恒定与波源运动无关,且测量速度在不同介质条件下,可以得到多种结果。
爱因斯坦受光粒子说影响,没有把光当成波来分析(参见《论动体的电动力学》和大学课本《普通物理学1》),所以结果不对。他也不知道任何一种光介质,不知道在稳定的空气中,光速是不会变的,麦克尔逊-莫雷实验,必然得到0结果;在高速运动粒子上发出的光,光速也必然是不变的。
丹麦天文学家罗默(OleRomer)在17世纪首次成功地计算出光速。他使用木星的一颗卫星有规律的轨道运动作为计时器,每次这颗卫星被巨大的行星(木星)所掩食,他便记录下一个“滴答”。但他发现,从地球上观察,这些滴答的出现并不像预想的那么规律,在一年之中会时而快几分钟,时而慢几分钟。
罗默计算出,这些时延是木星和地球在绕太阳运动时它们之间的距离变化所引起的。通过计算一年里地球、木星及其卫星在轨道上的相对位置,他算出了光穿过宇宙空间的速度。罗默于1676年向法国科学院提交了他的结果,数值与目前被接受的值之差不超过30%。
对光之本性的理论探讨也使人们对光速有所了解。19世纪60年代中期,苏格兰科学家詹姆斯·克拉克·麦克斯韦创建了一组方程,描述电磁场在空间中的行为。这个方程的一个解表明,电磁波在真空中必须以约为每秒30万公里的速度传播,与罗默及其后人的测量结果相当接近。
伦敦皇家研究院的迈克尔?法拉第用电场和磁场的概念解释静电力和磁场力,并表明光会受到磁场影响。这证实了可见光事实上是电磁波谱中的一部分。对电磁波谱其它部分——微波,红外线,紫外线,X射线和γ射线——传播速度的直接测量表明,它们在真空中都有相同的速度。用于测量光速的实验不断地变得更精确。到20世纪50年代,电子计时装置已经取代了古老的机械设备。20世纪80年代,通过测量激光和频率(f)和波长(λ),运用c=fλ公式计算出了光速(c)。这些计算以米和秒的标准定义为基础,就像现在一样,1米定义为氪-86源产生的光的波长的1,650,763.73倍,1秒则定义为铯-133原子超精细跃迁放出的辐射频率的9,192,631,770倍。这使得c达到非常高的精度,误差只有十亿分之几。
1983年,光速取代了米被选作定义标准,约定为299,792,458m/s,数值与当时的米定义一致。秒和光速的定义值,表示1米从此定义为光在真空中1/299,792,458秒内走过的距离。因此自1983年以来,不管我们对光速的测量作了多少精确的修正,都不会影响到光速值,却会影响到米的长度。你有多高事实上是由光速定义的。
但光速还定义着比长度更加基本的东西。阿尔伯特·爱因斯坦的工作表明了光速的真正重要性。由于他的功劳,我们知道,光速不仅仅是光子在真空中运动的速度,还是连接时间与空间的基本常数。
爱因斯坦年轻的时候曾经问自己,如果人运动的速度快到足以跟上光的脚步,光看起来是什么样子的。理论上它看上去像是你身边一个静止的峰,但爱因斯坦知道,麦克斯韦方程组不允许这种结果出现。他得出结论认为,要么是麦克斯韦的理论不适用于运动中的观察者,要么是相对运动力学需要更改。
爱因斯坦在他1905年发表的狭义相对论里解决了这个问题。这一理论基于一个通用原则:相对任何以恒定速度运动的观察者来说,不管这个速度是多少,物理原理及光速都是一样的。爱因斯坦的狭义相对论使我们对时间和空间的观念发生了革命性的变化,强调了光速在物理学中的根本地位。
想象你在一枚火箭里,与一道激光脉冲一同冲入宇宙空间。地球上的观察者会看到这一脉冲以光速远去。无论你相对于地球运动的速度为多少,譬如光速的99%罢,光线仍以光速超越你。看起来似乎很荒谬,但这是真的。使这为真的唯一途径,就是你火箭中的居住者和地球表面的观察者以不同方式衡量时间和空间。
时间与空间看上去当然是不同的,这依赖于你是在地球上还是在宇宙空间里。爱因斯坦的广义相对论将引力描述为时空几何结构的扭曲。这种说法的一个推论,就是始终沿可能的最短路径穿越时空的光线,在大质量物体附近会弯曲。这在1919年日食期间观测掠过太阳附近的星光被太阳的质量所弯曲而得到证明。这一观测使爱因斯坦的理论最终得到接受,并为他赢得了世界性的声誉。
但按照基本力学原理,如果光线偏转,它会被加速。这是否将使光速发生变化,动摇相对论的根本原则?在某种意义上是对的:我们从地球上观察到的光速,在它从太阳附近经过时确实会变化。然而相对论和光速不变原理不能被抛弃。
爱因斯坦认识到,引力是无法自由运动的观察者们经历的某种幻象。想象从一堵墙上跳下。在自由落体的过程中,你不会感动周围的引力作用,但任何在地面上瞧着你落下来的人,都会解释说你的运动是引力的作用所致。同样的说法对空间站中的宇航员也适用:他们被提及时总是说成时处在“零重力”环境里,但从地球的表面往上看,我们会用引力吸引来解释他们绕地球的轨道运动。所以当我们从地球上观察时,经过太阳附近的光线看上去弯曲、加速了,但如果我们自由落体地落向太阳,光线看上去会以恒速沿直线经过我们身边。对任何自由落体的观察者来说,经过他的光线都以恒定速度运动。不过,它在掠过扭曲其附近时空的大质量物体时,看上去会弯曲和加速。这表明,引力不能被理解为一个场力,而是应该理解为时空的一种内禀特性。
相对论另一个奇怪的推论是,没有任何物体能加速到光速。不和我们建造动力多么强劲的火箭飞船,它们也永远不能到达光速。这是因为物体运动得越快,其动能越大,惯性也越大。爱因斯坦在他的质能方程中指出,能量和质量或者说惯性相关联。因此一个物体的动能增加,它的惯性也增加,从而越来越难继续加速。这是一个收益递减原理:你对一个物体做的功越多,它就变得越重,加速的效果也越微弱。
把单一电子加速到光速,就需要无限的能量,粒子物理学家们对这一限制深有感触。质子进入美国伊利诺伊州Batawia费米实验室的Tevatron加速器时,它们的速度已经达到光速的99%。加速器的最后阶段使质子的能量提高了100倍,但速度仅增加到光速的99.99995%,与它们进入加速器的速度相比,提高不足1%。
不过,一直与相对论有冲突的量子理论看上去是允许物质以大于光速的速度运动的。在20世纪20年代,量子论显示一个系统相隔遥远的不同组成部分能够瞬时联系。例如,当一个高能光子衰变成两个低能光子时,它们的状态(例如,是顺时针或逆时针自旋)是不定的,直到对它们中间的某一个作出观察才确定下来。另一个粒子看上去感知到它的同伴被进行了一次观测,结果是任何对第二个粒子的测量总会得到与对第一个粒子的测量相一致的结果。这样远距离的瞬时联系,看起来像是一个讯息以无限大的速度在粒子之间传递了。它被爱因斯坦称为“幽灵式的超距作用”,听起来难以置信,但却是真实的现象。
1993年,加利福尼亚大学伯克利分校的RaymondChiao表明,量子理论还允许另一种超光速旅行存在:量子隧穿。想象朝一堵坚实的墙上踢一个足球,牛顿力学预言它会被弹回,但量子力学预言它还有极小的可能出现在墙的另一面。考虑这种情况的一种途径,是想象它能“借”到足够的能量穿越墙壁,并在到达另一面之后立即将能量归还。这并不违反物理定律,因为最终能量、动量和其它属性都得到了保存。德国物理学家维纳·海森堡的测不准原理表明,在一个系统中,总有某些属性——在这一情况中是能量——的值是不能确定的,只能确定在一个区间内,因此量子物理学原理允许系统利用这种不确定性,短时间借到一些额外的能量。在隧穿的情况中,粒子从障碍物的一面消失又从另一面重现的需要几乎可以忽略不计,障碍物可以任意的厚——不过随着厚度增加,粒子隧穿的几率也就迅速地朝零的方向递减,但请注意,不会等于0(如若这样,海森堡原理就会被反对,因为0测值为0是确定的)。
Chiao通过测量可见光光子通过特定过滤器的隧穿时间,证明了隧穿“超光速”隧穿效应的存在。为此,他让这些光子与在相似时间内穿过真空的光子进行比较。结果隧穿光子先到达探测器,Chiao证明它们穿越过滤器的速度可能为光速的1.7倍。
1994年,维也纳技术大学的FerencKraus表明,隧穿时间有一个不依赖于障碍物厚度的上限,这表示光子隧穿障碍物的时间没有上限。德国科隆大学的GunterNimtz也用微波实现了这种“超光速”。他甚至把莫扎特第40号交响曲调制在信号上,以4.7倍光速的速度将它传输通过12厘米厚的障碍物。
1、本网站为开放性注册平台,以上所有展示信息均由会员自行提供,内容的真实性、准确性和合法性均由发布会员负责,本网站对此不承担任何法律责任。
2、网站信息如涉嫌违反相关法律规定或侵权,请发邮件至599385753@qq.com删除。