科学

四面体

锥体的一种

中文名:四面体 外文名: 所属学科: 英文名:Three pyramid 别名:三棱锥 组成:四个三角形组成 应用:弓箭头,三棱刮刀 属性:锥体的一种 性质:几何体
四面体介绍
由4个全同正三角形面封闭围成,具有6个棱和4个顶点,全部顶点可以内接于球的正凸多面体(正四面体),以及其变形体。[1]

基本介绍

几何体,锥体的一种,由四个三角形组成,亦称为四面体,它的四个面(一个叫底面,其余叫侧面)都是三角形。

平面上的多边形至少三条边,空间的几何体至少四个面,所以四面体是空间最简单的几何体。四面体又称三棱锥。三棱锥有六条棱长,四个顶点,四个面。底面是正三角形,顶点在底面的射影是底面三角形的中心的三棱锥称作正三棱锥;而由四个全等的正三角形组成的四面体称为正四面体。

体积公式

棱锥的侧面积及全面积、体积公式、底面积公式

棱锥的侧面积及全面积

棱锥的侧面展开图是由各个侧面组成的,展开图的面积,就是棱锥的侧面积,则S棱锥侧=S1+S2+…+Sn(其中Si,i=1,2…n为第i个侧面的面积)

S全=S棱锥侧+S底

棱锥的底面积公式:S底=长×宽

棱锥和圆锥统称锥体,锥体的体积公式是:v=1/3sh(s为锥体的底面积,h为锥体的高)。

斜棱锥的侧面积=各侧的面积之和

正棱锥的侧面积:S正棱锥侧=1/2chˊ(c为底面周长,hˊ为斜高)。

棱锥的中截面面积:S中截面=1/4S底面

公式说明

折叠体积

棱锥的体积取决于平面外顶点到底面的距离,以及底面多边形的面积。前者称为棱锥的高,后者称为棱锥的底面积。设为棱锥的高,为棱锥的底面积,为棱锥的体积,则棱锥的体积可以用以下公式计算:这个公式早在公元三世纪就得到了证明。现代的证明一般使用积分。

假设有棱锥PA1A2...An,其中A1A2...An为底面的n边形,P为棱锥顶点。设P在底面的投影为Q点,PQ的长度为h。在线段PQ上取一点X,使得线段PX的长度为x:0≤x≤h,那么过点X而且与底面平行的平面截棱锥得到的形状是一个和底面的n边形相似的n边形,记作Ax1Ax2...Axn,它的面积Sx与底面积S的比值等于PX与PQ的比值的平方:在点X附近截取的“一片”棱锥“切片”,它的体积大约等于:所以棱锥的体积等于积分:对于正棱锥,假设它的底面是正n边形,边长为a,高是h,那么底面积是:所以它的体积是:

折叠表面积

棱锥的侧面展开图是由各个侧面组成的,展开图的面积,就是棱锥的侧面积Sc,其中是第i个侧面的面积。棱锥的表面积等于棱锥的侧面积Sc加上底面积S。假设顶点的投影Q点到第i个侧面对应的底边的距离是di,底边的长度是ai,那么棱锥的侧面积:对于正n棱锥,顶点到底面的投影是底面正n边形的中心。所以投影点到每一边的距离都相等:因此棱锥的斜高也就是侧面三角形的高:棱锥的侧面积[4]:87:其中p是底面正n边形的周长。假设底面正n边形的边长是a,高是h,那么它的周长是na,中心到每一边的距离是。所以斜高是:侧面积是:

应用实例

三棱锥P—ABC的侧棱PA,PB,PC两两互相垂直,侧面面积分别是6,4,3,则三棱锥的体积是多少?

解:设PA=X,PB=Y,PC=Z.∵PA⊥PB,PA⊥PC,PB⊥PC.S△PAB=6,S△PBC=4,S△PAC=3.

∴X*Y=12````````````````````````①

Y*Z=8`````````````````````````②

Z*X=6`````````````````````````③

解得:X=3,Y=4,Z=2.

∵PA⊥PB,PA⊥PC,PB⊥PC.

∴PA⊥平面PBC PA=X=3.

∴三棱锥的体积:1/3*S△PBC*PA=4。

内容声明

1、本网站为开放性注册平台,以上所有展示信息均由会员自行提供,内容的真实性、准确性和合法性均由发布会员负责,本网站对此不承担任何法律责任。

2、网站信息如涉嫌违反相关法律规定或侵权,请发邮件至599385753@qq.com删除。

Copyright © 趣爱秀