机械

人脸识别算法

人脸检测技术

  • 中文名:人脸识别算法
  • 外文名:
  • 别名:
  • 适用领域范围:信息技术
  • 原理:人脸图象或者相应的编码
  • 分类:二维三维
  • 人脸识别算法介绍
    在检测到人脸并定位面部关键特征点之后,主要的人脸区域就可以被裁剪出来,经过预处理之后,馈入后端的识别算法。识别算法要完成人脸特征的提取,并与库存的已知人脸进行比对,完成最终的分类。人脸识别算法的另一主流应用方向,其优势在于非接触操作而且直观方便便于事后查验。

    分类

    二维人脸识别算法

    目前的人脸识别方法主要集中在二维图像方面,二维人脸识别主要利用分布在人脸上从低到高80个节点或标点,通过测量眼睛、颧骨、下巴等之间的间距来进行身份认证。人脸识别算法主要有:

    1.基于模板匹配的方法:模板分为二维模板和三维模板,核心思想:利用人的脸部特征规律建立一个立体可调的模型框架,在定位出人的脸部位置后用模型框架定位和调整人的脸部特征部位,解决人脸识别过程中的观察角度、遮挡和表情变化等因素影响。

    2.基于奇异值特征方法:人脸图像矩阵的奇异值特征反映了图像的本质属性,可以利用它来进行分类识别。

    3.子空间分析法:因其具有描述性强、计算代价小、易实现及可分性好等特点,被广泛地应用于人脸特征提取,成为了当前人脸识别的主流方法之一。

    4.局部保持投影(Locality Preserving Projections,LPP)是一种新的子空间分析方法,它是非线性方法Laplacian Eigen map的线性近似,既解决了PCA等传统线性方法难以保持原始数据非线性流形的缺点,又解决了非线性方法难以获得新样本点低维投影的缺点。

    5.主成分分析(PCA)

    PCA模式识别领域一种重要的方法,现在已被广泛地应用于人脸识别算法中,基于PCA人脸识别系统在应用中面临着一个重要障碍:增量学习问题。增量PCA算法由新增样本重构最为重要PCS,但该方法随着样本的增加,需要不断舍弃一些不重要PC,以维持子空间维数不变,因而该方法精度稍差。

    6.其他方法:弹性匹配方法、特征脸法(基于KL变换)、人工神经网络法、支持向量机法、基于积分图像特征法(adaboost学习)、基于概率模型法。

    三维人脸识别算法

    二维人脸识别方法的最大不足是在面临姿态、光照条件不同、表情变化以及脸部化妆等方面较为脆弱,识别的准确度受到很大限制,而这些都是人脸在自然状态下会随时表现出来的。三维人脸识别可以极大的提高识别精度,真正的三维人脸识别是利用深度图像进行研究,自90年代初期开始,已经有了一定的进展。三维人脸识别方法有:

    1.基于图像特征的方法:采取了从3D结构中分离出姿态的算法。首先匹配人脸整体的尺寸轮廓和三维空间方向;然后,在保持姿态固定的情况下,去作脸部不同特征点(这些特征点是人工的鉴别出来)的局部匹配。

    2.基于模型可变参数的方法:使用将通用人脸模型的3D变形和基于距离映射的矩阵迭代最小相结合,去恢复头部姿态和3D人脸。随着模型形变的关联关系的改变不断更新姿态参数,重复此过程直到最小化尺度达到要求。基于模型可变参数的方法与基于图像特征的方法的最大区别在于:后者在人脸姿态每变化一次后,需要重新搜索特征点的坐标,而前者只需调整3D变形模型的参数。

    应用领域

    监控布控

    实时实现多路摄像机对数十万布控对象的现场识别和报警提示,广泛用于机场、火车站、银行等场所,实现对特定人群的布控。

    公安照片搜索系统

    公安系统目前面临的一个难题是无法充分利用手头上现成的(身份证、暂住证等)数以百万计的照片资源,在查案过程中拿到一张照片却无法有效的定位其身份,人工的逐张进行照片对比几乎是不可能完成的工作,只能花费大量的警力和时间进行排查。采用人脸识别实现快速人脸检索查找,充分体现科技强警的威力。

    门禁出入

    人脸识别算法的另一主流应用方向,其优势在于非接触操作而且直观方便便于事后查验。

    身份识别

    应用有考场考生身份识别系统,公安局罪犯积分系统等。

    相关资讯
    内容声明

    1、本网站为开放性注册平台,以上所有展示信息均由会员自行提供,内容的真实性、准确性和合法性均由发布会员负责,本网站对此不承担任何法律责任。

    2、网站信息如涉嫌违反相关法律规定或侵权,请发邮件至599385753@qq.com删除。

    Copyright © 趣爱秀