科学

灰度共生矩阵

通信科技专用术语

中文名:灰度共生矩阵 外文名: 所属学科: 适用领域:通信科技
灰度共生矩阵介绍
灰度共生矩阵就是一种通过研究灰度的空间相关特性来描述纹理的常用方法。标准定义如下:对于取定的方向θ和距离d,在方向为θ的直线上,一个像元灰度为i,另一个与其相距为d像元的灰度为j的点对出现的频数即为灰度共生矩阵第(i,j)阵元的值。[1]直觉上来说,如果图像的是由具有相似灰度值的像素块构成,则灰度共生矩阵的对角元素会有比较大的值;如果图像像素灰度值在局部有变化,那么偏离对角线的元素会有比较大的值。熵是图像所具有的信息量的度量,纹理信息也属于图像的信息,是一个随机性的度量,当共生矩阵中所有元素有最大的随机性、空间共生矩阵中所有值几乎相等时,共生矩阵中元素分散分布时,熵较大。

概念

由于纹理是由灰度分布在空间位置上反复出现而形成的,因而在图像空间中相隔某距离的两象素之间会存在一定的灰度关系,即图像中灰度的空间相关特性。灰度共生矩阵就是一种通过研究灰度的空间相关特性来描述纹理的常用方法。

生成

灰度直方图是对图像上单个象素具有某个灰度进行统计的结果,而灰度共生矩阵是对图像上保持某距离的两象素分别具有某灰度的状况进行统计得到的。

取图像(N×N)中任意一点(x,y)及偏离它的另一点(x+a,y+b),设该点对的灰度值为(g1,g2)。令点(x,y)在整个画面上移动,则会得到各种(g1,g2)值,设灰度值的级数为k,则(g1,g2)的组合共有k的平方种。对于整个画面,统计出每一种(g1,g2)值出现的次数,然后排列成一个方阵,再用(g1,g2)出现的总次数将它们归一化为出现的概率P(g1,g2)这样的方阵称为灰度共生矩阵。距离差分值(a,b)取不同的数值组合,可以得到不同情况下的联合概率矩阵。(a,b)取值要根据纹理周期分布的特性来选择,对于较细的纹理,选取(1,0)、(1,1)、(2,0)等小的差分值。

当a=1,b=0时,像素对是水平的,即0度扫描;当a=0,b=1时,像素对是垂直的,即90度扫描;当a=1,b=1时,像素对是右对角线的,即45度扫描;当a=-1,b=-1时,像素对是左对角线,即135度扫描。

这样,两个象素灰度级同时发生的概率,就将(x,y)的空间坐标转化为“灰度对”(g1,g2)的描述,形成了灰度共生矩阵。

实验中对灰度共生矩阵进行了如下的归一化。

特征

直觉上来说,如果图像的是由具有相似灰度值的像素块构成,则灰度共生矩阵的对角元素会有比较大的值;如果图像像素灰度值在局部有变化,那么偏离对角线的元素会有比较大的值。

通常可以用一些标量来表征灰度共生矩阵的特征,令G表示灰度共生矩阵常用的特征有:

ASM能量

也即每个矩阵元素的平方和。

如果灰度共生矩阵中的值集中在某一块(比如对连续灰度值图像,值集中在对角线;对结构化的图像,值集中在偏离对角线的位置),则ASM有较大值,若G中的值分布较均匀(如噪声严重的图像),则ASM有较小的值。

能量是灰度共生矩阵元素值的平方和,所以也称能量,反映了图像灰度分布均匀程度和纹理粗细度。如果共生矩阵的所有值均相等,则ASM值小;相反,如果其中一些值大而其它值小,则ASM值大。当共生矩阵中元素集中分布时,此时ASM值大。ASM值大表明一种较均一和规则变化的纹理模式。

对比度

直接反映了某个像素值及其领域像素值的亮度的对比情况。如果偏离对角线的元素有较大值,即图像亮度值变化很快,则CON会有较大取值,这也符合对比度的定义。其中。反映了图像的清晰度和纹理沟纹深浅的程度。纹理沟纹越深,其对比度越大,视觉效果越清晰;反之,对比度小,则沟纹浅,效果模糊。灰度差即对比度大的象素对越多,这个值越大。灰度公生矩阵中远离对角线的元素值越大,CON越大。

逆差矩

如果灰度共生矩阵对角元素有较大值,IDM就会取较大的值。因此连续灰度的图像会有较大IDM值。

逆差矩:反映图像纹理的同质性,度量图像纹理局部变化的多少。其值大则说明图像纹理的不同区域间缺少变化,局部非常均匀。

若灰度共生矩阵值分布均匀,也即图像近于随机或噪声很大,熵会有较大值。

熵是图像所具有的信息量的度量,纹理信息也属于图像的信息,是一个随机性的度量,当共生矩阵中所有元素有最大的随机性、空间共生矩阵中所有值几乎相等时,共生矩阵中元素分散分布时,熵较大。它表示了图像中纹理的非均匀程度或复杂程度。

自相关

其中自相关反应了图像纹理的一致性。如果图像中有水平方向纹理,则水平方向矩阵的COR大于其余矩阵的COR值。它度量空间灰度共生矩阵元素在行或列方向上的相似程度,因此,相关值大小反映了图像中局部灰度相关性。当矩阵元素值均匀相等时,相关值就大;相反,如果矩阵像元值相差很大则相关值小。

最后,可以用一个向量将以上特征综合在一起。例如,当距离差分值(a,b)取四种值的时候,可以综合得到向量:

h=[ASM1,CON1,IDM1,ENT1,COR1,...,ASM4,CON4,IDM4,ENT4,COR4]

综合后的向量就可以看做是对图像纹理的一种描述,可以进一步用来分类、识别、检索等。

相关资讯
内容声明

1、本网站为开放性注册平台,以上所有展示信息均由会员自行提供,内容的真实性、准确性和合法性均由发布会员负责,本网站对此不承担任何法律责任。

2、网站信息如涉嫌违反相关法律规定或侵权,请发邮件至599385753@qq.com删除。

Copyright © 趣爱秀